Finite Element Analysis of Cauchy–Born Approximations to Atomistic Models
نویسندگان
چکیده
This paper is devoted to a new finite element consistency analysis of Cauchy– Born approximations to atomistic models of crystalline materials in two and three space dimensions. Through this approach new “atomistic Cauchy–Born” models are introduced and analyzed. These intermediate models can be seen as first level atomistic/quasicontinuum approximations in the sense that they involve only shortrange interactions. The analysis and the models developed herein are expected to be useful in the design of coupled atomistic/continuum methods in more than one dimension. Taking full advantage of the symmetries of the atomistic lattice, we show that the consistency error of the models considered both in energies and in dual W 1,p type norms is O(ε2), where ε denotes the interatomic distance in the lattice.
منابع مشابه
On the Stability of Bravais Lattices and their Cauchy-Born Approximations
We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy– Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motiv...
متن کاملNonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملMultiscale Evaluation of the Nonlinear Elastic Properties of Carbon Nanotubes Under Finite Deformation
This paper deals with the calculation of the elastic properties for single-walled carbon nanotubes (SWCNTs) under axial deformation and hydrostatic pressure using the atomistic-based continuum approach and the deformation mapping technique. A hyperelastic model based on the higher-order Cauchy-Born (HCB) rule being applicable at finite strains and accounting for the chirality and material nonli...
متن کاملA cohesive finite element for quasi-continua
In this paper, a cohesive finite element method (FEM) is proposed for a quasi-continuum (QC), i.e. a continuum model that utilizes the information of underlying atomistic microstructures. Most cohesive laws used in conventional cohesive FEMs are based on either empirical or idealized constitutive models that do not accurately reflect the actual lattice structures. The cohesive quasi-continuum f...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011